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Abstract Adding sand grains at a single site in the Abelian sandpile models produces beau-
tiful but complex patterns. We study the effect of sink sites on such patterns. Sinks change
the scaling of the diameter of the pattern with the number N of sand grains added. For ex-
ample, in two dimensions, in the presence of a sink site, the diameter of the pattern grows
as

√
(N/ logN) for large N , whereas it grows as

√
N if there are no sink sites. In the pres-

ence of a line of sink sites, this rate reduces to N1/3. We determine the growth rates for
various sink geometries along with the case when there are two lines of sink sites forming a
wedge, and generalizations to higher dimensions. We characterize the asymptotic pattern in
the large N limit for one such case, the two-dimensional F-lattice with a single source adja-
cent to a line of sink sites. The characterization is done in terms of the positions of different
spatial features in the pattern. For this lattice, we also provide an exact characterization of
the pattern with two sources, when the line joining them is along one of the axes of the
lattice.

Keywords Pattern formation · Self-organized criticality

1 Introduction

It is well known that beautiful and complex patterns can be generated by the determinis-
tic evolution of systems under simple local rules, e.g. in the Game of life [1], and Turing
patterns [2]. Sandpiles, on a flat table with boundaries, formed by adding sand grains at a
constant rate, gives rise to singular structures like ridges in the stationary state, which have
attracted much attention recently [3, 4]. In the Abelian sandpile model (ASM), growing
sandpiles produce richer and hence more interesting patterns. This model is inspired by real
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Fig. 1 The lattices studied in
this paper: (a) F-lattice and
(b) Manhattan lattice

Fig. 2 (Color online) Stable
configuration for the ASM,
obtained by adding 5 × 104

grains at one site, on the F-lattice
of Fig. 1(a) with initial
checkerboard configuration.
Color code: red = 0, yellow = 1.
Apparent orange regions in the
picture represent patches with
checkerboard configuration.
(Details can be seen in the online
version using zoom in)

sandpile dynamics, but has different rules of evolution. The steady state of sandpile mod-
els with slow driving, in the presence of a boundary, has been much studied in the context
of self-organized criticality [5]. The Abelian sandpile model, with particles added at one
site, on an infinite lattice with periodic particle distribution has the very interesting prop-
erty of proportionate growth [6]. This is a well-known feature of the biological growth in
animals, where different parts of the growing animal grow at roughly the same rate. Our
interest in studying growing sandpiles comes from this being the prototypical model of pro-
portionate growth. Most of the other growth models studied in the physics literature, such
as diffusion-limited aggregation, or surface deposition, do not show this property. In these
models, growth is confined to some active outer region. The inner structures, once formed
are frozen in and do not evolve further in time [7].

In [6], we studied growing sandpiles in the Abelian model on the F-lattice and the Man-
hattan lattice. These are directed variants of the square lattice, obtained by assigning direc-
tions to the bonds, as shown in Fig. 1. We found that for three different choices of the initial
background configuration, the same pattern is produced (Fig. 2). We were able to character-
ize this pattern exactly. One of these special initial configurations is the one in which each
alternate site of the lattice is occupied, forming a checkerboard pattern. If we add particles
at the origin, and relax the configuration using the sandpile toppling rule, we generate a
beautiful, but fairly complex pattern, made up of triangles and dart-shaped regions (called
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“patches” (Fig. 2)), that shows proportionate growth and an unexpected 8-fold rotational
symmetry. The full characterization of this pattern reveals an interesting underlying math-
ematical structure, which seems to deserve further exploration. This is what we do in the
present paper by adding sink sites or multiple sources.

The presence of sink sites changes the pattern in interesting ways. In particular, it changes
how different spatial lengths in the pattern scale with the number of added grains N . For
example, in the absence of sink sites, the diameter of the pattern grows as

√
N for large N ,

whereas in the presence of a single sink site, this changes to a
√

N/ logN growth. If there
is a line of sink sites next to the site of addition, the growth rate is N1/3. We also study the
case in which the source site is at the corner of a wedge-shaped region of wedge angle ω,
where the wedge boundaries are absorbing. We show that for any ω the pattern grows as
Nα , with α = ω/(π + 2ω). This analysis is extended to other lattices with different initial
height distributions, and to higher dimensions.

We also studied the exact characterization of the asymptotic pattern in the infinite N

limit for the pattern with a line of sink sites. For a single point source, the determination
of the different distances in the pattern requires a solution of the Laplace equation on a
discrete Riemann surface of two-sheets [6]. Interestingly, for the pattern with a line sink, we
still have to solve the discrete Laplace equation, but the structure of the Riemann surface
changes from two-sheets to three-sheets.

We study the effect on the pattern of having multiple sites of addition. For multiple
sources, the pattern of small patches near each source is not substantially different from
a single-source pattern, but some rearrangements occur in the larger outer patches. Two
patches may sometimes join into one, or, conversely, a patch may break up into two. While
the number of patches undergoing such changes is finite, the sizes and positions of all the
patches are affected by the presence of the other source, and we show how these changes
can be calculated exactly for the asymptotic pattern.

Spatial patterns in the sandpile models were first discussed by Liu et al. [8]. The asymp-
totic shape of the boundaries of the sandpile patterns produced by adding grains at a sin-
gle site in different periodic backgrounds was discussed in [9]. Borgne et al. [10] obtained
bounds on the rate of growth of these boundaries and later these bounds were improved
by Fey et al. [11] and Levine et al. [12]. The first detailed analysis of different periodic
structures found in the patterns were carried out by Ostojic in [13, 14]. Other spatial config-
urations in the Abelian sandpile models, like the identity [10, 15, 16] or the stable state pro-
duced from special unstable states, show complex internal self-similar structures [8], which
also share common features with the patterns studied here. There are other models, which
are related to the Abelian sandpile model, e.g. the Internal Diffusion-Limited Aggregation
(IDLA), Eulerian walkers (also called the rotor-router model), and the infinitely-divisible
sandpile, which also show similar structure. For the IDLA, Gravner and Quastel showed
that the asymptotic shape of the growth pattern is related to the classical Stefan problem in
hydrodynamics, and determined the exact radius of the pattern with a single point source
[17]. Levine and Peres have studied patterns with multiple sources in these models recently,
and proved the existence of a limit shape [18].

This paper is organized as follows. We define the model in Sect. 2, and briefly recapitulate
the main ideas in the analysis of the single source pattern. Then, in Sect. 3, we discuss scaling
the of the diameter of the patterns with N for different sink geometries. First, we consider
the pattern in the presence of a line of sink sites. Then, this analysis is extended to other
sink geometries: two intersecting line sinks in two dimensions and two or three intersecting
planes of sink sites in three dimensions. The problem of a single sink site is a bit different
from the others, and is discussed separately in Sect. 4. In Sect. 5, we numerically verify the
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growth rates. The remaining sections are devoted to a detailed characterization of some of
these patterns. In Sect. 6, we characterize the pattern in the presence of a line sink. In Sect. 7,
we discuss the case when there are two sources present. These analytical calculations of the
metric properties of the asymptotic pattern are compared in Sect. 8, with the measured values
for the patterns with finite but large N . Section 9, contains a summary and some concluding
remarks.

2 The Single Source Pattern

We consider the Abelian sandpile model on the F-lattice (Fig. 1a). This is a square lattice
with directed bonds such that each site has two inward and two outward arrows. A different
assignment of the arrow directions, that gives us the Manhattan lattice is shown in Fig. 1b.
The asymptotic pattern formed by the growing sandpile on the Manhattan lattice is the same
as that on the F-lattice [6]. We shall discuss here only the F-lattice, but the discussion is
equally applicable to the Manhattan lattice.

Define a position vector on the lattice, R ≡ (x, y). In the Abelian sandpile model, a
height variable z(R), called the number of grains on the site, is assigned to each site R. In
a stable configuration all sites have height z(R) < 2. The system is driven by adding grains
at a single site and if this addition makes the system unstable it relaxes by the toppling rule:
each unstable site transfers one grain each in the direction of its outward arrows. We start
with an initial checkerboard configuration in which z(R) = 1 for sites with (x + y) = even,
and 0 otherwise. Clearly, the average density of sand grains for the initial configuration
is 1/2 per site. For numerical purpose we used a lattice large enough so that none of the
avalanches reaches the boundary. The result of adding N = 5 × 104 grains at the origin is
shown in Fig. 2.

The characterization of this pattern in the large-N limit is discussed in detail in [6]. De-
fine 2Λ(N) as the diameter of a pattern, when N grains have been added, measured as the
height of the smallest rectangle that encloses all sites that have toppled at least once. As
mentioned before, the pattern exhibits proportionate growth. While there is as yet no rigor-
ous proof of this important property, we assume this in the following. Then, it is natural to
describe the pattern in the reduced coordinates defined by ξ = x/Λ and η = y/Λ. A posi-
tion vector in these reduced coordinates is defined by r = R/Λ ≡ (ξ, η). Then in the limit
Λ → ∞, the pattern can be characterized by a function ρ(r) which gives the local density of
sand grains in a small rectangle of size δξδη about the point r, with 1/Λ � δξ , δη � 1. We
define 
ρ(r) as the change in density ρ(r) from its initial background value. The pattern is
made of a union of distinct regions, called “Patches”, where 
ρ(r) is constant inside each
patch and takes only two possible values, 1/2 in a high-density patch (color yellow in Fig. 2)
and 0 in a low-density patch (color orange).

Let TΛ(R) be the number of topplings at site the R when the diameter reaches the value
2Λ for the first time. Define

φ(r) = lim
Λ→∞

1

2Λ2
TΛ(R′), (1)

where R′ ≡ (�Λξ	, �Λη	), with �x	 being the floor function which gives the largest integer
≤ x. From the conservation of sand-grains in the toppling process, it is easy to see that φ

satisfies the Poisson equation [6]

∇2φ(r) = 
ρ(r) − N

Λ2
δ(r). (2)
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The complete specification of φ(r) determines the density function 
ρ(r) which in turn
characterizes the asymptotic pattern. The condition that determines φ(r) is the requirement
that inside each patch of constant density, it is a quadratic function of ξ and η [6]. Let us
write

φ(r) = aξ 2 + 2hξη + bη2 + dξ + eη + f, (3)

where a, h, b, d , e and f are constants inside a patch and a + b = 
ρ/2 corresponding to
the patch. Then each patch is characterized by the values of these parameters. The continuity
of φ(r) and its derivatives along the boundary between two adjacent patches imposes linear
relations among the corresponding parameters. These linear equations can be solved on
the adjacency graph of patches which forms a square lattice on a two sheeted Riemann
surface [6].

3 Rate of Growth of the Patterns

For the single source pattern, the diameter 2Λ(N) � 2
√

N , for large N . We want to study
how this dependence gets modified in the presence of sink sites.

First, consider the pattern formed by adding sand grains at a single site in the presence
of a line of sink sites. Any grain reaching a sink site gets absorbed, and is removed from the
system. For simplicity let us consider the source site at Ro ≡ (xo,0) and the sink sites along
the y-axis. A picture of the pattern produced by adding 14336000 grains at (1,0) is shown
in Fig. 3.

The equation analogous to (2) for this problem is

∇2φ(r) = 
ρ(r) − N

Λ2
δ(r − ro), (4)

Fig. 3 (Color online) Pattern produced by adding grains at a single site adjacent to a line of sink sites. Color
code: red = 0 and yellow = 1. Apparent orange regions in the picture represent patches with checkerboard
configuration. (Zoom in for details in the online version.). Note that the pattern is rotated anti-clockwise
by 90◦
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for all r in the right-half plane with ξ > 0, where ro is the position of the source in reduced
coordinates. Also, as there is no toppling at the sink sites, φ must satisfy the boundary
condition

φ(r) = 0 for all r ≡ (0, η). (5)

We can think of φ as the potential due to a point charge N/Λ2 at ro and an areal charge
density −
ρ(r), in the presence of a grounded conducting line along the η-axis. This prob-
lem can be solved using the well-known method of images in electrostatics. Let r′ be the
image point of r with respect to the η-axis. Define 
ρ(r) in the left half plane as


ρ(r′) = −
ρ(r). (6)

Then the Poisson equation for this new charge configuration is

∇2φ(r) = 
ρ(r) − N

Λ2
δ(r − ro) + N

Λ2
δ(r − r′

o). (7)

As the function 
ρ(r) is odd under reflection, φ automatically vanishes along the η-axis.
We define Nr as the number of sand grains that remain unabsorbed. Then

Nr =
∑

x>0

∑

y


z(x, y), (8)

where 
z(x, y) is the change in the height variables between its values before and after the
system relaxes. Clearly, for large Λ, we can write

Nr � Λ2
∫

H

dτ
ρ(r), (9)

where dτ = dξdη is the infinitesimal area around r ≡ (ξ, η). The integration is performed
over the right half-plane H with ξ > 0. We shall use the sign � to denote equality up to
leading order in Λ. Since 
ρ(r) is a non-negative bounded function, exactly zero outside a
finite region, this integral exists. Let its value be C2, then we have

Nr � C2Λ
2. (10)

Let Na denote the number of grains that are absorbed by the sink sites. Then considering
that the grains can reach the sink sites only by toppling at its neighbors we have

Na � 1

2

∑

y

TΛ(1, y). (11)

The factor 1/2 comes from the fact that in the F-lattice, only half of the sites on the column
x = 1 would have arrows going out to the sink sites. Then using our scaling ansatz in (1),
for Λ large,

TΛ(1, y) � 2Λ
∂φ

∂ξ

⏐⏐⏐⏐
ξ=0

. (12)

Hence

Na � Λ2
∫ ∞

−∞
dη

∂φ

∂ξ

⏐⏐⏐⏐
ξ=0

. (13)
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Now from (7) the potential φ can be written as the sum of two terms: φdipole due to two point
charges N/Λ2 and −N/Λ2 at ro ≡ (ξo,0) and its image point r′

o ≡ (−ξo,0) respectively, and
the term φrest due to the areal charge density.

φ(r) = φdipole(r) + φrest (r), (14)

where

∇2φdipole(r) = − N

Λ2
δ(r − ro) + N

Λ2
δ(r − r′

o),

∇2φrest (r) = 
ρ(r). (15)

We first consider the case where Ro is finite and ro = Ro/Λ vanishes in the large Λ limit.
Then φdipole reduces to a dipole potential, and it diverges near the origin. However, φrest (r)
is a continuous and differentiable function for all r. From the solution of the dipole potential,
it is easy to show that

φdipole(r, θ) = A
cos θ

r
, (16)

for 1 � r � 1/Λ, where we have used polar coordinates (r, θ) with θ being measured with
respect to the ξ -axis. Here A is a numerical constant, which is a property of the asymptotic
pattern. Then

∂φ

∂ξ

⏐⏐⏐⏐
ξ=0

= A

η2
, (17)

and the integral in (13) diverges as A/ηmin, where ηmin is the cutoff introduced by the lattice.
Using ηmin = O(1/Λ) it is easy to show that

Na � C1Λ
3, (18)

where C1 is a constant. Then using (10) and (18) and that Na and Nr add up to N , we get

C1Λ
3 + C2Λ

2 � N. (19)

Considering the dominant term in the expression for large Λ, it follows that Λ increases as
N1/3.

For the patterns in the other limit where the source is placed at a distance O(Λ) such that
ro is non-zero for Λ → ∞, φdipole is non-singular along the sink line. Then, clearly Na ∼ Λ2

and as a result Λ(N) ∼ N1/2.
The above analysis can be easily generalized to a case with the sink sites along two

straight lines intersecting at an angle ω and a point source inside the wedge. For a square
lattice, ω = 0,π/2,π,3π/2 and 2π are most easily constructed, and avoid the problems of
lines with irrational slopes, or rational numbers slopes with large denominators. The wedge
with wedge-angle ω = π/2 is obtained by placing the sink sites along the x and y-axis and
the source site at Ro ≡ (1,1) in the first quadrant. The pattern with a line sink, discussed in
previous section, corresponds to ω = π .

For the general ω, the corresponding electrostatic problem reduces to determining the
potential function φ inside a wedge formed by two intersecting grounded conducting lines.
Again the potential has two contributions: the potential φpoint (r) due to a point charge at
the source site and the potential φrest (r) due to the areal charge density. We first consider
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the case where the source site is placed at a finite distance from the wedge corner such that
the distance in reduced coordinates vanishes in the large Λ limit. In this limit φrest is a non-
singular function of r while φpoint diverges close to the origin. A simple calculation of the
electrostatic problem gives

φpoint (r, θ) ≈ A
sinαθ

rα
, (20)

where α = π/ω and we have used polar coordinates (r, θ) with the polar angle θ measured
from one of the absorbing lines. Again A is a constant independent of N or Λ and is a
property of the asymptotic pattern. Then arguing as before, we get

Na � C1Λ
2+α and Nr � C2Λ

2. (21)

So the equation analogous to (19) is

C1Λ
2+α + C2Λ

2 � N. (22)

For wedge angle ω = π , α = 1, and the above equation reduces to (19).
Similar arguments involving conformal transformation have been used earlier in the con-

text of equilibrium statistical physics to determine the wedge-angle dependence of surface
critical exponents near a wedge [19].

For the problem where the source site is at a distance O(Λ) from the wedge corner both
the functions φrest and φpoint are nonsingular close to the origin. It is easy to show that Λ(N)

grows as N1/2.
These arguments can be easily extended to other lattices with different initial height

distributions, or to higher dimensions. Consider, for example, an Abelian sandpile model
defined on the cubic lattice. The allowed heights are from 0 to 5, and a site topples if the
height exceeds 5, and sends one particle to each neighbor. The sites are labelled by the
Cartesian coordinates (x, y, z), where x, y and z are integers. We consider the infinite octant
defined by x ≥ 0, y ≥ 0, z ≥ 0. We start with all heights equal to 4, and add sand grains at
the site (1,1,1). We assume that the sites on planes x = 0, y = 0 and z = 0 are all sink
sites, and any grain reaching there is lost. We add N grains and determine the diameter of
the resulting stable pattern.

We again write the potential function in two parts: φpoint due to a point charge at
(1/Λ,1/Λ,1/Λ) and φrest due to the bulk charge density in the presence of three con-
ducting grounded planes. Then, a simple electrostatic calculation shows that the potential
φpoint is the octapolar potential with it’s form in spherical polar coordinate as

φ(r, θ,�) ≈ f (θ,φ)

r4
. (23)

This then implies that the equation determining the dependence of Λ on N is

C1Λ
6 + C2Λ

3 � N. (24)

4 A Single Sink Site

Let the site of addition be the origin, with the sink site placed at Ro. We shall show that
when Ro lies in a high-density patch (color yellow in Fig. 4), the asymptotic patterns are
identical to the one produced in the absence of the sink site.
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Fig. 4 (Color online) The pattern produced by adding 224000 grains at the origin with a sink site at (400,0),
inside a patch of density 1 (color yellow). Color code: red = 0 and yellow = 1. The apparent orange regions
correspond to the checkerboard height distribution. (Zoom in for details in the online version.)

The patterns, produced for ro close to 1, with the sink sites placed deep inside a high-
density patch are simple to analyze, even for finite but large Λ. One such pattern is presented
in Fig. 4.

We see that the effect of the sink site on the pattern is to produce a depletion pattern
centered at this site. The depletion pattern is a smaller copy of the single source pattern.
We define the function 
zsink(R;N) as the difference between the heights at R in the final
stable configuration produced by adding N grains at the origin, with and without the sink
site.


zsink(R;N) = 
zsource+sink(R;N) − 
zsource(R;N). (25)

From the figure it is seen that, in this case, 
zsink(R;N) is the negative of the pattern
produced by a smaller source, centered at R0. The number of grains required to produce this
smaller pattern is exactly the number of grains Na absorbed at the sink site.


zsink(R;N) = −
zsource(R − Ro;Na). (26)

This is immediately seen from the fact that the toppling function TΛ(R) satisfies


TΛ(R) = 
zsource+sink(R;N) − NδR,0 + NaδR,Ro , (27)

where 
 is the toppling matrix for the sandpile model on the F-lattice [5]. Let Tsource(R;N)

be the number of topplings at R, when we add N particles at the origin in the absence of
any sink site. Since (27) is a linear equation, it follows that a solution of this equation is

TΛ(R) = Tsource(R;N) − Tsource(R − Ro;Na). (28)
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This is a valid solution for our problem, if the corresponding heights in the final configura-
tion with the sink are all non-negative. This happens when the region with nonzero 
zsink

is confined within a high-density patch of the single source pattern.
The number Na can be determined from the requirement that the number of topplings

at the sink site is zero. The potential function for the single source problem diverges
as (4π)−1 log r near the source [6]. Considering the ultraviolet cutoff due to the lattice,
Tsource(R,N) at R = 0 can be approximated by (4π)−1N logN to leading order in N .
Then at R = R0, Tsource(R − Ro;Na) is approximately equal to (4π)−1Na logNa whereas
Tsource(R0;N) ≈ Nφsource(r0), where φsource(r) is the potential function for the problem
without a sink. Then from (28) we have

1

4π
Na logNa � Nφsource(ro). (29)

For large N , this implies that

Na � 4πφsource(ro)N/ logN. (30)

Then, in the large N limit, for a sink at a fixed reduced coordinate ro, the relative size of the
defect produced by the sink site decreases as 1/

√
logN . Hence asymptotically, the fractional

area of the defect region will decrease to zero, if the sink position ro is inside a high-density
patch.

When the sink site is inside a low-density patch, the subtraction procedure in (26) gives
negative heights, and no longer gives the correct solution. However it is observed for the
patches in the outer layer, where the patches are large, that the effect of the sink site is
confined within the neighboring high-density patches (Fig. 5) and rest of the pattern in the
asymptotic limit remains unaffected.

The pattern in which the source and the sink sites are adjacent to each other, appears to
be very similar to the one produced without the sink site. This is easy to see. The Poisson
equation analogous to equation (2) for this problem is

∇2φ(r) = 
ρ(r) − N

Λ2
δ(r) + Na

Λ2
δ(r − ro), (31)

where Na is the number of grains absorbed in the sink site at ro. In an electrostatic analogy,
as discussed earlier, φ can be considered as the potential due to a distributed charge of
density −
ρ(ro) and two point charges of strength N/Λ2 and −Na/Λ

2, placed at the origin
and at ro respectively. It is easy to see that the dominant contribution to the potential is the
monopole term with net charge (N −Na)/Λ

2. The contribution due to other terms decreases
as 1/Λ for large Λ, and the asymptotic pattern is the same as without a sink, with N − Na

particles added.
The number Na of particles absorbed is determined by the condition that the number of

topplings at (1,0) (the sink position) is zero. The potential produced at (1,0) and (0,0),
by the areal charge density is nearly the same. The number of topplings at (1,0), if we add
Na particles at the sink site, is approximately (4π)−1Na logNa . Now, from the solution of
the discrete Laplacian, the number of topplings produced at (1,0) due to N particles added
at (0,0) is approximately (4π)−1(N logN − CN) with C being an undetermined constant.
Equating these two, we get

Na logNa � N logN − CN. (32)
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Fig. 5 (Color online) The pattern produced by adding 224000 grains at the origin with a sink site placed
at (360,140), inside a low-density patch. Color code red = 0 and yellow = 1. The apparent orange regions
correspond to the checkerboard height distribution. (Details can be seen in the online version using zoom in.)

As the asymptotic pattern is the same as that produced by adding (N − Na) grains at the
origin without a sink, we have N − Na � Λ2, and

(N − Λ2) log(N − Λ2) � N logN − CN. (33)

Simplification of this equation for large N shows that Λ grows as
√

N/ logN with N .
For finite N , the leading correction to φ(r) comes from the dipole term in the potential.

This term breaks the reflection symmetry of the pattern about the origin. A measure of the
bilateral asymmetry is the difference of the boundary distances on two opposite sides of the
source. As the relative contribution of the dipole potential compared to the monopole term
decays as logΛ/Λ, for large Λ, this difference vanishes in the asymptotic pattern in the
reduced coordinates.

5 Numerical Results

All the above scaling behaviors are verified by the measurement of lengths in the patterns
for finite, but large N . Let Λ∗

line(N) be the real positive root of (19) for a given integer
value of N . As Λline takes only the integer values on the lattice, an estimate of it would be
N int[Λ∗

line(N)], the integer nearest to Λ∗
line(N). Interestingly, we found that for a choice

of C1 = 0.1853 and C2 = 0.528, this estimate gives values which differ from the measured
values at most by 1 for all N in the range of 100 to 3 × 106. We rewrite (19) as

0.1853Λ3
line + 0.528Λ2

line � N, (34)
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where we used the symbol � to denote that both sides differ at most by 1. Clearly more
precise estimates of C1 and C2 would be required if we want this to work for larger N .

Similarly for the other two equations (22) and (24) we find that they are in very good
agreement with our numerical data. We consider the case of wedge angle ω = 2π . This
corresponds to the case with the source site next to an infinite half-line of sink sites. Here
α = 1/2 and (22) reduces to

C1Λ
5/2
ω=2π + C2Λ

2
ω=2π � N. (35)

Choosing C1 = 0.863408 and C2 = 0.043311, we find that the function N int[Λ∗
ω=2π (N)]

differs from the measured values by at most 1 for all N in the range of 100 to 2 × 105. Then,
as in (34), we write

0.863408Λ
5/2
ω=2π + 0.043311Λ2

ω=2π � N. (36)

Similarly, for the three dimensional Abelian sandpile model with the source site inside the
first octant and x = 0, y = 0, and z = 0 as the absorbing planes, the equation determining
the dependence of the diameter on N is

0.0159Λ6
3d + 88Λ3

3d � N. (37)

We have verified this equation for N between 5 × 105 to 5 × 108.
We obtained these equations by determining the number of absorbed grains Na and the

remaining grains Nr from dimensional counting grounds, and the final equations are then
only a statement of the conservation of the sand grains. It is quite remarkable that this scaling
analysis gives almost the exact values of the diameter. In addition, these equations have an
important feature that they include a “correction to scaling” term whereas the usual scaling
analysis ignores the sub-leading powers.

We also verify (30) using patterns with fixed ro and the sink site inside a high-density
patch in the outer layer of the pattern. It is found that for a change of N from 224000 to
896000, Na logN/N changes by less than 7%, which is consistent with the scaling relation.

In the other limit, where the sink site is next to the source, the dependence of Λ on N is
given in (33). We measure Λ(N) for the patterns with the sink site at (1,0) and the source
at the origin. For N in the range of 100 to 5 × 105 we find that the function N int[Λ∗

point (N)]
with C = 2.190 in (33), gives almost exact values of Λ(N), with their difference being at
most 1. Then we write

(N − Λ2
point ) log(N − Λ2

point ) � N logN − 2.190N. (38)

In the last case, let R1 and R2 be the boundary distances measured along the positive
and the negative x axis. The difference R2 − R1 is plotted in Fig. 6 where the data is found
to fit to the function 1.22 log (R2 + 0.5). This confirms the result that the relative bilateral
asymmetry (R2 − R1)/R2 vanishes in the asymptotic pattern as logΛ/Λ.

6 Characterization of the Pattern with a Line Sink

The pattern with a line sink (Fig. 3), discussed in Sect. 3, retained two important properties
present in the single source pattern (Fig. 2). These are: The asymptotic pattern is made of the
union of two types of patches of excess density 1/2 and 0 and the separating boundaries of
the patches are straight lines of slope 0, ±1 or ∞. However the adjacency graph is changed
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Fig. 6 The bilateral asymmetry
due to the presence of a sink site
in Fig. 4

Fig. 7 (Color online) 1/r3 transformation of the pattern in Fig. 3. Two adjoining patches are connected by
drawing a straight line

significantly and this changes the sizes of the patches as well. In this section we show how
to explicitly determine the potential function on this adjacency graph.

The adjacency graph of the patches is shown in Fig. 8. This representation of the graph is
easier to see by taking the 1/r3 transformation of the pattern and then joining neighboring
patches by straight lines (Fig.7). Each vertex in the graph is connected to four neighbors
except for the vertices corresponding to the patches next to the absorbing line. These have
coordination number 3. Also the vertex at the center corresponding to the exterior of the
pattern is connected to seven neighbors.

Let us write the quadratic potential function in a patch P having excess density 1/2 as

φ
P
(r) = 1

8
(m

P
+ 1)ξ 2 + 1

4
n

P
ξη + 1

8
(1 − m

P
)η2 + d

P
ξ + e

P
η + f

P
, (39)
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Fig. 8 (Color online) The adjacency graph of the patches corresponding to the pattern in Fig. 3

where the parameters m, n, d , e and f take constant values within a patch. Similarly for a
low-density patch P ′

φ
P ′ (r) = 1

8
m

P ′ (ξ
2 − η2) + 1

4
n

P ′ ξη + d
P ′ ξ + e

P ′ η + f
P ′ . (40)

Using the continuity of φ(r) and its first derivatives along the common boundaries be-
tween neighboring patches it has been shown that for the single source pattern without sink
sites m, and n take integer values [6]. The same argument also applies to this problem and it
can be shown that (m,n) are the coordinates of the patches in the adjacency graph in Fig. 8.
These coordinates are shown next to some of the vertices. There are two different patches
corresponding to the same set of (m,n) values. In fact, as in the single source pattern the ad-
jacency graph forms a square lattice on a two sheeted Riemann surface, the same is formed
for this pattern, but on a three sheeted Riemann surface. This can be constructed by mod-
ifying the graph in Fig. 8 keeping its topology the same. In this representation the pattern
covers half of the surface with (m,n) being the Cartesian coordinates on the surface.

Define function D(m,n) = d(m,n) + ie(m,n) on this lattice. As discussed in [6], the
continuity of φ(r) and its first derivatives along the common boundary between neighboring
patches imposes linear relations between d and e of the corresponding patches. Using these
matching conditions it can be shown that d and e satisfy the discrete Cauchy-Riemann
conditions [6]

d(m + 1, n + 1) − d(m,n) = e(m,n + 1) − e(m + 1, n),

e(m + 1, n + 1) − e(m,n) = d(m + 1, n) − d(m,n + 1),
(41)

and then the function D satisfies the discrete Laplace equation

∑

i=±1

∑

j=±1

D(m + i, n + j) − 4D(m,n) = 0, (42)

on this adjacency graph.
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Let us define M = m + in and z = ξ + iη. As argued before, close to the origin the
potential φ diverges as 1/r (see (16)). Then, the corresponding complex potential function
Φ(z) ∼ 1/z. As M ∼ d2Φ/dz2, and D ∼ dΦ/dz, it follows that for large |M|,

D ∼ M2/3. (43)

Also, the condition that on the absorbing line φ(r) must vanish implies that for the vertices
with even n along the red line in Fig. 8 e(0, n) vanishes. These vertices correspond to the
patches with the absorbing line as the horizontal boundary in Fig. 3.

Equation (42) with the above constraint and the boundary condition (see (43)) has a
unique solution. The normalization of φ is fixed by the requirement that d(1,0) = −1,
which fixes the diameter of the pattern to be 2 in reduced units. All the spatial distances
in the pattern can be expressed in terms of this solution D(m,n) using the matching con-
ditions between two neighboring patches. As an example, consider the boundary between
the patches corresponding to (m,n) and (m + 1, n) with (m + n) being odd. The matching
conditions only allow a horizontal boundary between them with the equation η = ηp , where

e(m + 1, n) − e(m,n) = ηp/2. (44)

Similarly there is a vertical boundary between the patches (m,n) and (m − 1, n), with the
equation ξ = ξp , where

d(m − 1, n) − d(m,n) = ξp/2. (45)

The other boundaries can similarly be determined using the solution for D(m,n). The char-
acterization of the asymptotic patterns for ω = π/2, 3π/2 and 2π is qualitatively similar
and will not be discussed here.

7 Patterns with Two Sources

In this section we discuss patterns produced by adding N grains each at two sites placed
at a distance 2Λro from each other along the x-axis, at Λro and −Λro with ro ≡ (ξo,0).
Again, the diameter 2Λ is defined as the height of the smallest rectangle enclosing all sites
that have toppled at least once. The two limits, r0 close to zero and r0 large are trivial: For
ro → 0, the asymptotic pattern is the same as that produced by adding grains at a single site.
On the other hand if ro > 1, each source produces its own pattern, which do not overlap, and
the final pattern is a simple superposition of the two patterns.

As noted before, the adjacency graph for the single source pattern has a square lattice
structure on a Riemann surface of two-sheets [6]. Then the graph for two non-intersecting
single source patterns is a square lattice on two disjoint Riemann surfaces, each having two-
sheets (Fig. 11). Only the vertex at the origin represents the exterior of the pattern, which
is the same for both of the single source patterns. It has sixteen neighbors and is placed
midway between the two Riemann surfaces. For later convenience let us associate the lower
Riemann surface to the pattern around the left source at −ro and denote it by ΓL. Similarly
the upper Riemann surface as ΓR corresponding to the pattern around the right source ro.

For 0 < ro < 1, the two single source patterns overlap. Using the Abelian property, we
first topple as if the second source were absent. The resulting pattern still has some unstable
sites in the region where the patterns overlap. Further relaxing these sites transfers these ex-
cess grains outward, and changes the dimensions and positions of the patches: some patches
become bigger, some may merge, and sometimes a patch may beak into two disjoint patches.
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Fig. 9 (Color online) The pattern produced by adding N = 640000 grains each at (−760,0) and (760,0) on
the F-lattice with the initial checkerboard distribution of grains and relaxing. This corresponds to ro = 0.95.
Color code red = 0 and yellow = 1. (Details can be seen in the online version using zoom in.)

Fig. 10 (Color online) The pattern constructed by combining two single source patterns and drawing con-
necting lines between few patches following the connectivity in the pattern in Fig. 9

The pattern produced with two sources with r0 = 0.95 is shown in Fig. 9. We see that
there are still only two types of periodic patches, corresponding to 
ρ(r) values 0 and 1/2,
and the slope of the boundaries between patches takes the values 0, ±1 or ∞.

The relaxation due to overlap changes the adjacency graph from the case with no overlap.
This modified adjacency graph, for ro in the range 0.70 to 1.00, is shown in Fig. 12. For r0

just below 1, these changes are few and are listed below.
(i) We note that the patches labelled A and A′ in Fig. 10 have the same ξ and η depen-

dence of the potential function φ. Then, for r0 just below 1, these patterns can join with
each other by a thin strip. This only requires a small movement in the boundaries of nearby
patches (i.e. only a small change in the d and e values of nearby patches). Thus, in the adja-
cency graph, the vertices corresponding to A and A′ are collapsed into a single vertex A in
Fig. 12.
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Fig. 11 (Color online) Representation of the adjacency graph of the patches for two non-overlapping single
source patterns as a square grid on two Riemann surfaces each of two-sheets. The vertices with same (m,n)

coordinates on different sheets are represented by different colors

Fig. 12 (Color online) The adjacency graph for two intersecting single source patterns around two sites of
addition placed at a distance 2ro from each other. The graph has the structure of square grids on four Riemann
sheets except for a finite number of vertices indicated by the alphabet A, B , O , O ′, O ′′ and D shown placed
in the middle layer. This graph remains unchanged for ro in the range 0.70 to 1.00
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Fig. 13 (Color online) The pattern produced by adding 640000 grains at site (−600,0) and (600,0). Al-
though the pattern is significantly different from the one in Fig. 9, their adjacency graph is same

(ii) Similarly, the vertices corresponding to the patches B and B ′ in Fig.10 are collapsed
into a single vertex B in Fig. 12.

(iii) This divides the region outside the pattern in to three parts, O , O ′ and O ′′. They are
also shown in Fig. 12 as separate vertices.

(iv) The patches marked C and C ′ also have the same quadratic form, and the vertical
boundary between them disappears. However, the patches D and D′ are also joined by a
thin strip. This horizontal strip divides the joined C and C ′ into two again (Fig. 10).

The adjacency of other patches remains unchanged. The adjacency graph of the pattern
is shown in Fig. 12. Interestingly, this new adjacency graph remains the same for all 0.70 <

r0 < 1, even though for ro < 0.85, the sizes of different patches are substantially different.
Compare the pattern for r0 = 0.70 in Fig. 13, with the pattern for r0 = 0.95 in Fig. 9: The
shape of the central patches in Fig. 13 is different from that in Fig. 9.

In Fig. 12, we have have placed the vertices which are formed by merging or dividing
the patches, midway between the Riemann sheets corresponding to the two sources. As r0

is decreased below 0.70, more collisions between the growing patches will occur and the
number of vertices in this middle region will increase. For any nonzero r0, the number of
vertices in the middle layer is finite. In the ro → 0 limit, vertices from both the surfaces ΓL

and ΓR come together and form a single Riemann surface corresponding to a single source
pattern around r = 0. For r0 small, but greater than zero, the outer patches are arranged as
in the single-source case, but closer to the sources, one has a crowded pattern near each
source. In the adjacency graph, this corresponds to the vertices near the patch (0,0) roughly
arranged as on a Riemann surface of two-sheets, while the ones farther from the patch (0,0)

remain undisturbed on the 4-sheeted Riemann surface.
We now characterize the pattern with two sources and r0 > 0.70 in detail by explicitly

determining the potential function on this adjacency graph.
The Poisson equation analogous to (2) for this problem is

∇2φ(r) = 
ρ(r) − N

Λ2
δ(r − ro) − N

Λ2
δ(r + ro). (46)

Let us use the same quadratic form of the potential function given in (39) and (40).
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Again using the same argument given in [6], it can be shown that m and n are the coordi-
nates of the patches in both the adjacency graphs in Figs. 11 and 12. These coordinates are
shown next to each vertex. Also, on this graph, the function D(m,n) = d(m,n) + ie(m,n)

satisfies the discrete Laplace equation
∑

m′

∑

n′
D(m′, n′) − 4D(m,n) = 0, (47)

where (m′, n′) denote the neighbors of (m,n) in the odd or even sublattice [20]. Let us
define zo = ξo + iηo where (ξo, ηo) and (−ξo,−ηo) are the coordinates corresponding to ro

and −ro. Considering that close to ro and −ro the potential φ(r) diverges logarithmically it
can be shown (as done for single source pattern in [6]) that for large |M|,

D(m,n) = z̄o

M

4
± A√

2π

√
M + lower order in M, on ΓL

= −z̄o

M

4
± A√

2π

√
M + lower order in M, on ΓR, (48)

where A is a constant independent of N or Λ. The solution of (47) with the boundary
condition D(0,0) = 0 and that in (48) for large |M| determines the final pattern.

8 Numerical Analysis

In both the examples in Sects. 6 and 7 the patterns are characterized in terms of the solution
of the standard two dimensional lattice Laplace equation on the corresponding adjacency
graphs. The solution is well-known when (m,n) ∈ Z

2 [21]. In our case where the lattice
sites form surfaces of multiple sheets, we have not been able to find a closed-form expression
for D(m,n). However, the solutions can be determined numerically to very good precision
by solving it on a finite grid −L ≤ m,n ≤ L with the corresponding boundary conditions
imposed exactly at the boundary.

For the pattern with the line sink, the calculation is performed with D = M2/3 at the
boundary and then the solution is normalized to have d(1,0) = −1. We determined d and e

numerically for L = 100, 200, 300, 400 and 500 and extrapolated our results for L → ∞.
Comparison of the results from this numerical calculation and that obtained by measure-
ments on the pattern is presented in Table 1. We consider the four different lengths R1, R2,
R3 and R4 as defined in Fig. 14. By the definition of the diameter of the pattern R1 = 2Λ.
We present the values of R2, R3 and R4 normalized by R1 for different N . The asymptotic
values of these lengths are determined from the values of d and e. Comparison of these
results shows very good agreement between the theoretical and the measured values.

A similar numerical calculation is done for the pattern with two sources. In this case
the boundary condition is given by (48). The value of A is determined from a self con-
sistency condition that the diameter of the pattern in the reduced coordinate is 2 which

Table 1 Comparison of different
lengths measured directly from
the pattern in Fig. 14 for
increasing values of N , with their
theoretical values

N 896k 14336k 57344k 229376k Theoretical

R2/R1 0.769 0.768 0.770 0.770 0.7698

R3/R1 0.675 0.675 0.667 0.668 0.6666

R4/R1 0.609 0.609 0.617 0.616 0.6172
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Fig. 14 (Color online) The spatial lengths R1, R2, R3 and R4 tabulated in Table 1

Table 2 Comparison of different
lengths measured directly from
the two source pattern for
ro = 0.800 with their theoretical
values

N 2.5k 10k 40k 160k 640k Theoretical

R1/
√

N 1.84 1.84 1.84 1.83 1.83 1.82

R2/
√

N 1.06 1.07 1.07 1.06 1.05 1.06

R3/
√

N 0.22 0.21 0.20 0.19 0.18 0.18

R4/
√

N 0.18 0.19 0.19 0.18 0.18 0.18

R5/
√

N 0.20 0.22 0.21 0.21 0.21 0.21

imposes 2e(−1,0) = −1 corresponding to the vertex A in Fig. 12. We determined d and e

numerically for L = 100, 200, 300, 400 and 500 and extrapolated our results for L → ∞.
A comparison of the results from this numerical calculation and that obtained by measure-
ments on the pattern are presented in Table 2. We considered five different spatial lengths in
the pattern, corresponding to ro = 0.800. These different lengths are drawn in Fig. 15 and
their values rescaled by

√
N , for the patterns with increasing N , are given in Table 2. The

asymptotic values of these lengths are obtained using the values of d and e. The rescaled
lengths extrapolated to the infinite N limit match very well with the theoretical results.

9 Discussion

While the results discussed have not been established rigorously, they can be considered as
exact in the sense that the coordinates of all patches can be determined numerically to any
desired precision by solving the Laplace equation. As noted before, it would be desirable
to have a direct proof of the proportional growth property from the definition of the prob-
lem. Also, we use the observation that the asymptotic pattern consists of only two types of
patches, and the adjacency graph of the pattern is also taken as observed. It would be nice to
see it following from the definition of the problem. The unexpected accuracy of the scaling
arguments giving (34), (36), (37), (38) also deserves to be understood better.
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Fig. 15 (Color online) The spatial lengths R1, R2, R3, R4 and R5 tabulated in Table 2

We have shown that the exact characterization of the patterns in the F-lattice on a checker-
board background reduces to solving a discrete Laplace equation on the adjacency graph of
the pattern. For the single source pattern this graph is a square grid on a two-sheeted Rie-
mann surface and in the presence of a line sink it is on a three-sheeted Riemann surface.
This Riemann surface structure occurs for other sink geometries as well and the number of
sheets can be determined from the way φ diverges near the origin.

If the potential φ(r) diverges as r−a near the origin, then the corresponding complex
function Φ(z) ∼ z−a . Then d2

dz2 Φ ∼ z−2−a . In all the cases studied above, the patch to which

point z belongs is characterized by integers (m,n), where d2

dz2 Φ ∼ m + in. Also d
dz

Φ ∼
d + ie. Writing D = d + ie, and M = m + in, we see that D ∼ M

1+a
2+a . This then gives the

number of Riemann sheets. For example, for the wedge angle ω = 2π , we have a = 1/2.
Then D ∼ M3/5, and the Riemann surface would have 5 sheets.

The patterns discussed so far in this paper have only two types of patches with densities
1/2 and 1. But it is possible to have patterns with patches of other densities. For example, for
the patterns with two sources, any finite inclination of the line joining the sources with the x-
axis introduces patches which have areal density different from 1/2 or 1. One such pattern
produced by adding 40000 grains each at (−180,0) and (180,20) is shown in Fig. 16.
The regions with stripes of red and yellow are patches of the new density. In addition, the
boundaries of these patches have slopes other than 0, ±1 and ∞. Most of the analysis
presented here is applicable to this pattern, except that the matching conditions along the
common boundary between two patches and the adjacency graph are different.

The cases in which the full pattern can be explicitly determined are clearly special. For
example, one of the conditions used for the exact characterization of the patterns in this
paper is that inside each patch the height variables are periodic and hence 
ρ(r) is constant.
It is easy to check that this condition is not met for most sink geometries. For example,
patterns of the type discussed in Sect. 4 with any ω other than integer multiples of π/4
have aperiodic patches. In such cases, the present treatment for characterization of patterns
is clearly not applicable. However, the scaling analysis for the growth of the spatial lengths
in the pattern with N is still valid.



836 T. Sadhu, D. Dhar

Fig. 16 (Color online) Pattern produced by adding N = 40000 grains each at (−180,0) and (180,20) on
the F-lattice with initial checkerboard distribution of grains and relaxing. Color code red = 0 and yellow = 1.
(Details can be seen in the online version using zoom in.)

The function D = d + ie satisfies the discrete Cauchy-Riemann condition (see (41)).
These functions are known as discrete holomorphic functions in the mathematics literature
and in the context of critical two-dimensional lattice models [22]. Usually they have been
studied for a square grid of points on the plane [20, 21]. While more general discretizations
of the plane have been discussed [23, 24], not much is known about the behavior of such
functions for multi-sheeted Riemann surfaces.

In our analysis we have also used the fact that the patterns have nonzero average overall
excess density (i.e. C2 in (10) is nonzero). The case C2 = 0 is quite different, and requires
a substantially different treatment. We hope to discuss such patterns in a future publica-
tion [25].
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